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Abstract Body 
Limit 4 pages single-spaced. 

 
Background / Context:  
Description of prior research and its intellectual context. 
 
In a classic paper, Rosenbaum and Rubin (1983) proposed propensity score analysis as a 
practical tool for reducing selection bias through balancing on measured covariates. Since then, a 
variety of propensity score techniques have been developed for both the estimation and the 
application of the propensity score. Models for estimating the propensity score equation have 
included parametric logit regression with chosen interaction and polynomial terms (e.g., Dehejia 
& Wahba, 1999; Hirano & Imbens, 2001), and generalized boosting modeling (McCaffrey, 
Ridgeway, & Morral, 2004). Methods for estimating the treatment effect while accounting for 
the propensity score include stratification, weighting, matching, and regression adjustment. 
Rubin (1985) argued that a Bayesian approach to propensity score analysis should be of great 
interest to the applied Bayesian analyst, and yet propensity score estimation within the Bayesian 
framework was not addressed until relatively recently. Hoshino (2008) developed a quasi-
Bayesian estimation method for general parametric models, such as latent variable models, and 
developed a Markov chain Monte Carlo (MCMC) algorithm to estimate the propensity score. 
McCandless, Gustafson, and Austin (2009) provided a practical Bayesian approach to propensity 
score stratification, estimating the propensity score and the treatment effect and sampling from 
the joint posterior distribution of model parameters via an MCMC algorithm. The marginal 
posterior probability of the treatment effect can then be obtained based on the joint posterior 
distribution. Similar to the McCandless et al. (2009)'s study, An (2010) presented a Bayesian 
approach that jointly models both the propensity score equation and outcome equation at the 
same time and extended this one-step Bayesian approach to propensity score regression and 
single nearest neighbor matching methods. 
 
A consequence of the Bayesian joint modeling procedure utilized by McCandless et al. (2009) 
and An (2010) is that the propensity score estimates may be affected by the outcome variable 
that are observed after treatment assignment, and thus result in biased propensity score 
estimation. This is especially problematic if the relationship between the outcome and the 
propensity score is misspecified (McCandless, Douglas, Evans, & Smeeth, 2010). To solve this 
problem, McCandless et al. (2010) utilized an approximate Bayesian technique introduced by 
Lunn, Best, Spiegelhalter, Graham, and Neuenschwander (2009) for preventing undesirable 
feedback between propensity score model and outcome model components. Specifically, 
McCandless et al. (2010) included the posterior distribution of the propensity score parameters as 
covariate input in the outcome model so that the flow of information between the propensity 
score and the outcome is restricted. This so-called sequential Bayesian propensity score analysis 
yields treatment effect estimates that are comparable to estimates obtained from frequentist 
propensity score analysis. Nevertheless, as McCandless et al. (2010) point out, their method is 
only approximately Bayesian and also encounters the difficulty that the Markov chain is not 
guaranteed to converge. 
 
In order to maintain a fully Bayesian specification while overcoming the conceptual and 
practical difficulties of the joint modeling methods of McCandless et al. (2009) and An (2010), a 
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two-step Bayesian propensity score approach was recently developed by Kaplan and Chen 
(2012) that can incorporate prior information on the model parameters of both the propensity 
score equation and outcome model equation. Consistent with Bayesian theory (see e.g., de 
Finetti, 1974), specifying prior distributions on the model parameters is a natural way to quantify 
uncertainty - here in both the propensity score and outcome equations. 
  
Kaplan and Chen (2012) conducted three simulation studies as well as a small case study 
comparing frequentist propensity score analysis with the two-step Bayesian alternative focusing 
on the estimated treatment effect and variance estimates. The effect of different sample sizes, 
true treatment effect and choice of priors on treatment e effect ect and variance estimates were 
also evaluated. Consistent with Bayesian theory, Kaplan and Chen (2012)'s findings showed that 
lower prior precision of treatment effect is desirable when no prior information is available in 
order to obtain estimates similar to frequentist results but with more accurate intervals; or higher 
prior precision is preferable when accurate prior information regarding treatment effect is 
attainable in order to obtain more precise treatment effect estimates. For the case of small sample 
size, the Bayesian approach shows slight superiority in the estimation of the treatment effect 
compared to the frequentist counterpart. 
 
A further study of the covariate balance properties of the Kaplan and Chen (2012) approach was 
given in Chen and Kaplan. Their results of a case study revealed that both Bayesian and 
frequentist propensity score approaches substantially reduced initial imbalance and performance 
on covariate balance was similar in regard to the standardized mean/proportion differences and 
variance ratios in the treatment group and control group. Similar performance was also found 
with respect to 95% bootstrap intervals and posterior probability intervals. That is, although the 
frequentist propensity score approach provided slightly better covariate balance for the 
propensity score stratification and weighting methods, the two-step Bayesian approach offered 
slightly better covariate balance under optimal full matching method. Results of Chen and 
Kaplan's simulation study indicated similar findings. In addition, the Bayesian propensity score 
approach with informative priors showed equivalent balance performance compared to the 
Bayesian approach with noninformative priors, indicating that the specification of the prior 
distribution did not greatly influence the balance properties of the two-step Bayesian approach. 
The optimal full matching method, on average, offered the best covariate balance compared to 
stratification and weighting methods for both Bayesian and frequentist propensity score 
approaches. Chen and Kaplan also found that the two-step Bayesian approach under optimal full 
matching with highly informative priors provided, on average, the smallest standardized 
mean/proportion difference and variance ratio of the covariates between the treatment and 
control groups. 
 
Chen and Kaplan argued that a benefit of conducting Bayesian propensity score analysis is that 
one can obtain a distribution of estimated propensity scores and thus a distribution of 
corresponding balance indices (e.g. Cohen's d and variance ratio) so that the variation in balance 
indices can be studied in addition to the point estimates to assist in balance checking. Good 
balance is achieved if both the point estimates and the posterior probability intervals of the 
balance indices fall into the desirable range. 
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Purpose / Objective / Research Question / Focus of Study: 
Description of the focus of the research. 
 
The Bayesian propensity score approaches described in the preceding paragraphs all assume that 
the propensity score model itself is, in some sense, fixed.  Quoting Hoeting et al. (1999): 
 "[S]tandard statistical practice ignores model uncertainty. Data analysts 
 typically select a model from some class of models and then proceed as if 
 the selected model had generated the data. This approach ignores the 
 uncertainty in model selection, leading to over-con_dent inferences and 
 decisions that are more risky than one thinks they are."( Hoeting, Madigan,  
 Raftery, and Volinsky,1999,pg. 382) 
Thus, we argue that it is incorrect to treat the propensity score equation as fixed. Rather, as a 
model for treatment selection, it is reasonable to assume that many possible models could have 
been chosen. Therefore, a full accounting of uncertainty in propensity score analysis should also 
address model uncertainty, and thus the purpose of this paper is to explore Bayesian model 
averaging in the propensity score context. 
  
Setting: 
NA 
  
Population / Participants / Subjects:  
NA 
  
Intervention / Program / Practice:  
NA 
 
Significance / Novelty of study: 
Previous research on Bayesian propensity score analysis did not take into account model 
uncertainty.  In this regard, an internally consistent Bayesian framework for model building and 
estimation must also account for model uncertainty. The significance of the current study is that 
it directly addresses the problem of uncertainty in propensity score models via the method of 
Bayesian model averaging (BMA).   
 
Statistical, Measurement, or Econometric Model:  
Description of the proposed new methods or novel applications of existing methods. 
 
Details about the model are given in Appendix B. 
 
Usefulness / Applicability of Method:  
The usefulness of the proposed method is that it provides the investigator a way to incorporate 
prior knowledge regarding the relationship between the covariates and treatment selection (via 
the Kaplan and Chen, 2012 approach) while at the same time acknowledging model uncertainty 
via Bayesian model averaging.  In addition, we provide a fully Bayesian MCMC methodology to 
obtain propensity score and treatment effect estimates, as well as R code to conduct such an 
analysis.  
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Research Design: 
Description of the research design (e.g., qualitative case study, quasi-experimental design, 
secondary analysis, analytic essay, randomized field trial). 
 
Our research design will utilize a combination of simulation studies and real data analysis.  The 
simulation study will examine the choice of parameter and model priors. The real data example 
will examine a model relating full v. part day kindergarten attendance on achievement outcomes 
for first grade student using the ECLS-K.   
 
Data Collection and Analysis:  
Description of the methods for collecting and analyzing data. 
(May not be applicable for Methods submissions) 
NA 
 
Findings / Results:  
Description of the main findings with specific details. 
 
The R code has been written. Preliminary findings suggest that the fully MCMC algorithm for 
Bayesian model averaging with in the PSA framework provides accurate expected a posteriori 
estimates of the treatment effect.  
 
Conclusions:  
Description of conclusions, recommendations, and limitations based on findings. 
 
A fully Bayesian approach to propensity score analysis must account for both parameter 
uncertainty and model uncertainty. Previous Bayesian approaches only examined parameter 
uncertainty. We find that by accounting for model uncertainty via Bayesian model averaging of 
the propensity score equation provides very good estimates of the propensity score, which in 
turn, provides very good estimates of the treatment effect. A central issue in all Bayesian 
analyses is the elicitation of priors.  In the context of Bayesian PSA, priors the propensity score 
equation parameters can be difficult to elicit. We are presently examining a variety of different 
so-called "objective priors" for this purpose - including Jeffreys' priors and maximum entropy 
priors. The results of this work will not be part  
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Appendix

A recent paper by x & y (2012) advanced a two-step approach to Bayesian

propensity score analysis that was found to quite accurately estimate the treat-

ment e↵ect, while at the same time preventing undesirable feedback between

the propensity score model and that outcome model components characteris-

tic of other Bayesian propensity score approaches. We apply Bayesian model

averaging to the x & y (2012) model, and describe that model in this section.

Specification of the Two-Step Bayesian PSA model

In the x & y (2012) two-step Bayesian propensity score approach (hereafter,

BPSA), the propensity score model specified as the following logit model.

Log

✓
e(x)

1� e(x)

◆
= ↵+ �

0
x, (1)

where ↵ is the intercept, � refers to the slope and x represents a design matrix of

chosen covariates. For for this step, x & y (2012) used the R packageMCMClogit

to sample from the posterior distribution of ↵ and � using a random walk

Metropolis algorithm. After the propensity score estimates are obtained, a

Bayesian outcome model is fit in the second step to estimate the treatment

e↵ect via various propensity score methods such as stratification, weighting,

matching and regression adjustment.

To illustrate the x & y (2012) approach, consider a posterior sampling pro-

cedure of a chosen Bayesian logit model with 1000 iterations and a thinning

interval of 1. Then for each observation, there will be m = 1000 propensity

score estimates ê(x) calculated using propensity score model parameters ↵ and

� as follows,

ê(x) =
exp(↵+ �

0
x)

1 + exp(↵+ �

0
x)

. (2)

Based on each estimated propensity score, there will be J = 1000 treatment

estimates generated from posterior distribution of � (i = 1, . . . ,m, j = 1, . . . , J),

where � is the treatment e↵ect. x & y (2012) then provide the following treat-

ment e↵ect estimator,

E(� | x, y, Z) = m

�1
J

�1
mX

i=1

JX

j=1

�j(⌘i), (3)

1
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where J

�1
PJ

j=1 �j(⌘i) is the posterior sample mean of � in the Bayesian out-

come model based on the i

th set of propensity scores ⌘i. This posterior sample

mean is then averaged over m sets of propensity scores. The posterior variance

of � is then based on the total variance formula,

V ar(� | x, y, Z) = m

�1
mX

i=1

�

2
�(⌘i)

+(m�1)�1
mX

i=1

{µ�(⌘i)�m

�1
mX

i=1

µ�(⌘i)}
2
, (4)

where

�

2
�(⌘i)

= (J � 1)�1
JX

j=1

[{�j(⌘i)� J

�1
JX

j=1

�j(⌘i)}]2, (5)

is the posterior sample variance of � in the Bayesian outcome model under the

i

th set of propensity scores and

µ�(⌘i) = J

�1
JX

j=1

�j(⌘i), (6)

is the posterior sample mean of � in the same Bayesian outcome model. Notice

that two sources of variation are present in equation (4). The first source of

variation is the average of the posterior variances of � across the posterior sam-

ples of propensity scores, represented by the first part of the right hand side of

equation (4), and the second source of variation comes from the variance of the

posterior means of � obtained across the posterior samples of propensity scores,

estimated by the second part of the right of hand side of equation (4) x & y

(2012).

Bayesian Model Averaging

Consider a quantity of interest such as a future observation or a parameter.

Following the notation given in Madigan & Raftery (1994), we will denote this

quantity as �. Next, consider a set of competing models Mk, k = 1, 2, . . . ,K

that are not necessarily nested. The posterior distribution of � given data y

can be written as

p(�|y) =
KX

k=1

p(�|Mk)p(Mk|y). (7)

2
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where p(Mk|y) is the posterior probability of model Mk written as

p(Mk|y) =
p(y|Mk)p(Mk)PK
l=1 p(y|Ml)p(Ml)

, l 6= k. (8)

The interesting feature of equation (8) is that p(Mk) will likely be di↵er-

ent for di↵erent models. The term p(y|Mk) can be expressed as an integrated

likelihood

p(y|Mk) =

Z
p(y|✓k,Mk)p(✓k|Mk)d✓k, (9)

where p(✓k|Mk) is the prior density of ✓k under modelMk (Raftery, 1997). Thus,

BMA provides an approach for combining models specified by researchers. The

advantage of BMA has been discussed in Madigan & Raftery (1994) who showed

that BMA provides better predictive performance than that of a single model.

Given that the propensity score is the predicted probability of treatment assign-

ment given a set of covariates, we hypothesize that BMA should provide better

prediction of treatment assignment than a single propensity score equation.

Computational Considerations

As pointed out by Hoeting (1999), BMA is di�cult to implement. In particular,

they note that the number of terms in equation (7) can be quite large, the

corresponding integrals are hard to compute (though possibly less so with the

advent of MCMC), the specification of p(Mk) may not be straightforward, and

choosing the class of models to average over is also challenging. The problem

of reducing the overall number of models that one could incorporate in the

summation of equation (7) has led to a solution based on the so-called leaps and

bounds algorithm.

For our paper, we propose a fully Bayesian MCMC methodology. In the

first step, we use the R program BMA to select models (covariates) with certain

cumulative posterior probability. In the second step, we use the Bayesian logit

program MCMClogit to obtain the posterior distribution of propensity scores

for each selected model. In the third step, we sample from the posterior dis-

tribution of PS in each model with posterior probabilities as weights to obtain

final posterior distribution of the propensity score. This is then used in the

outcome model via weighting, stratification, or matching.

3
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